Warsaw University of Technology

Institute of Aeronautics and Applied Mechanics

Finite element method 2 (FEM2)

Introduction

10.2021

The finite element method (FEM) is an approximate method which can be used as a numerical procedure to solve physical problems including:

- solid body mechanics,
- heat transfer,
- fluid flow,
- electromagnetism,
- coupled field problems
- ...

FEM was developed in 1950s to solve problems for the civil and aeronautical industry. The method become the most powerful analysis tool, mainly due to the development of computers.

Errors

total error = modelling error + discretization error + numerical error

modelling error \approx discretization error \approx numerical error \rightarrow min

Modelling error

Available information about the real object:

- material data
- geometry
- work conditions

Simplifing assumptions

- dimensionality
- material model
- nonlinearities
- type of load

Example. Wooden board loaded by gravity.

Discretization error

Discretization

- type (mapped, free, sweep)
- density

Stress components at the notch tip versus element size d (numerical results)

Numerical error

- solver
- condition number

 $cond([K]) = ||K|| \cdot ||K||^{-1}$

rounding (number of significant digits)

Approximately, if the condition number $cond([K]) = 10^k$, then up to k digits can be lost during solution of the system of linear equations.

$$r \ge p - \log_{10}\left(cond\left(\left[K\right]\right)\right)$$

p – number of significant digits in the computer representation of numbers

- *r* number of significant digits of the result
- In FE models the value of cond([K]) can reach 10^8

Example. DOF solution u(x,y) for 2D problem. FE model with 4-node quadrilaterals

<u>Example.</u> Stress component $\sigma_x(x,y)$ for 2D problem. FE model with 4-node quadrilateral elements

